Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(8): 2248-2261, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35939806

RESUMO

Sirtuin-7 (Sirt7) is a nuclear NAD+-dependent deacetylase with a broad spectrum of biological functions. Sirt7 overexpression is linked to several pathological states and enhances anticancer drug resistance, making the enzyme a promising target for the development of novel therapeutics. Despite a plethora of reported in vivo functions, the biochemical characterization of recombinant Sirt7 remains inadequate for the development of novel drug candidates. Here, we conduct an extensive biochemical analysis of Sirt7 using newly developed binding and kinetic assays to reveal that the enzyme preferentially interacts with and is activated by nucleosomes. Sirt7 activation by nucleic acids alone is effective toward long-chain acylated hydrophobic substrates, while only nucleosome binding leads to 105-fold activation of the deacetylase activity. Using endogenous chromatin and recombinant acetylated nucleosomes, we reveal that Sirt7 is one of the most efficient deacetylases in the sirtuin family and that its catalytic activity is limited by the rate of dissociation from deacetylated nucleosomes.


Assuntos
Nucleossomos , Sirtuínas , Cromatina , Histonas/metabolismo , NAD/metabolismo , Sirtuínas/metabolismo
2.
Biochemistry ; 61(5): 354-366, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143176

RESUMO

Chromatin abnormalities are common hallmarks of cancer cells, which exhibit alterations in DNA methylation profiles that can silence tumor suppressor genes. These epigenetic patterns are partly established and maintained by UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1), which senses existing methylation states through multiple reader domains, and reinforces the modifications through recruitment of DNA methyltransferases. Small molecule inhibitors of UHRF1 would be important tools to illuminate molecular functions, yet no compounds capable of blocking UHRF1-histone binding in the context of the full-length protein exist. Here, we report the discovery and mechanism of action of compounds that selectively inhibit the UHRF1-histone interaction with low micromolar potency. Biochemical analyses reveal that these molecules are the first inhibitors to target the PHD finger of UHRF1, specifically disrupting histone H3 arginine 2 interactions with the PHD finger. Importantly, this unique inhibition mechanism is sufficient to displace binding of full-length UHRF1 with histones in vitro and in cells. Together, our study provides insight into the critical role of the PHD finger in driving histone interactions, and demonstrates that targeting this domain through a specific binding pocket is a tractable strategy for UHRF1-histone inhibition.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Histonas , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinogênese , Cromatina , Metilação de DNA , Histonas/metabolismo , Humanos , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Commun ; 11(1): 5244, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067423

RESUMO

The protein deacetylase SIRT6 maintains cellular homeostasis through multiple pathways that include the deacetylation of histone H3 and repression of transcription. Prior work suggests that SIRT6 is associated with chromatin and can substantially reduce global levels of H3 acetylation, but how SIRT6 is able to accomplish this feat is unknown. Here, we describe an exquisitely tight interaction between SIRT6 and nucleosome core particles, in which a 2:1 enzyme:nucleosome complex assembles via asymmetric binding with distinct affinities. While both SIRT6 molecules associate with the acidic patch on the nucleosome, we find that the intrinsically disordered SIRT6 C-terminus promotes binding at the higher affinity site through recognition of nucleosomal DNA. Together, multivalent interactions couple productive binding to efficient deacetylation of histones on endogenous chromatin. Unique among histone deacetylases, SIRT6 possesses the intrinsic capacity to tightly interact with nucleosomes for efficient activity.


Assuntos
Cromatina/metabolismo , Nucleossomos/metabolismo , Sirtuínas/metabolismo , Acetilação , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Nucleossomos/genética , Ligação Proteica , Domínios Proteicos , Sirtuínas/química , Sirtuínas/genética
4.
Mol Cell ; 78(2): 210-223.e8, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32208170

RESUMO

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.


Assuntos
Metilação de DNA/genética , Heterocromatina/genética , Metaboloma/genética , S-Adenosilmetionina/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Citoplasma/genética , Citoplasma/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Células HCT116 , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Metionina/genética , Camundongos , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos
5.
Nucleic Acids Res ; 46(19): 9907-9917, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30239791

RESUMO

Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.


Assuntos
Fator 1 de Modelagem da Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Cromatina/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
7.
Elife ; 52016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27690308

RESUMO

The histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4)2 histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex. Cac1 alone not only binds H3/H4 with high affinity, but also promotes histone tetramerization independent of the other subunits. Moreover, we identify a minimal region in the C-terminus of Cac1, including the structured winged helix domain and glutamate/aspartate-rich domain, which is sufficient to induce (H3/H4)2 tetramerization. These findings reveal a key role of Cac1 in histone tetramerization, providing a new model for CAF-1-H3/H4 architecture and function during eukaryotic replication.

8.
Structure ; 23(2): 322-31, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25651062

RESUMO

Individual posttranslational modifications (PTMs) of p53 mediate diverse p53-dependent responses; however, much less is known about the combinatorial action of adjacent modifications. Here, we describe crosstalk between the early DNA damage response mark p53K382me2 and the surrounding PTMs that modulate binding of p53 cofactors, including 53BP1 and p300. The 1.8 Å resolution crystal structure of the tandem Tudor domain (TTD) of 53BP1 in complex with p53 peptide acetylated at K381 and dimethylated at K382 (p53K381acK382me2) reveals that the dual PTM induces a conformational change in p53. The α-helical fold of p53K381acK382me2 positions the side chains of R379, K381ac, and K382me2 to interact with TTD concurrently, reinforcing a modular design of double PTM mimetics. Biochemical and nuclear magnetic resonance analyses show that other surrounding PTMs, including phosphorylation of serine/threonine residues of p53, affect association with TTD. Our findings suggest a novel PTM-driven conformation switch-like mechanism that may regulate p53 interactions with binding partners.


Assuntos
Metilação de DNA/genética , Ligantes , Modelos Moleculares , Processamento de Proteína Pós-Traducional/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Cristalografia por Raios X , Dano ao DNA/fisiologia , Humanos , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica
9.
Methods Mol Biol ; 1053: 241-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23860658

RESUMO

The importance of tyrosine phosphorylation in normal cell physiology is well established, highlighted by the many human diseases that stem from abnormalities in protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) function. Contrary to earlier assumptions, it is now clear that both PTKs and PTPs are highly specific, non-redundant, and tightly regulated enzymes. Hematopoietic cells express particularly high numbers of PTKs and PTPs, and aberrant function of these proteins have been linked to many hematopoietic disorders. While PTK inhibitors are among FDA approved drugs for the treatment of leukemia and other cancers, efforts to develop therapeutics that target specific PTPs are still in its infancy. Here, we describe methods on how to evaluate effects of PTP inhibitors on T cell receptor signaling. Moreover, we provide a comprehensive strategy for compound prioritization, applicable to any drug discovery project involving T cells. We present a testing funnel that starts with relatively high-throughput luciferase reporter assays, followed by immunoblot, calcium flux, flow cytometry, and proliferation assays, continues with cytokine bead arrays, and finishes with specificity assays that involve RNA interference. We provide protocols for experiments in the Jurkat T cell line, but more importantly give detailed instructions, paired with numerous tips, on how to prepare and work with primary human T cells.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Células Jurkat , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/enzimologia
10.
Mol Cell Biol ; 33(3): 605-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23184661

RESUMO

The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Regulação Fúngica da Expressão Gênica , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Fosforilação , Mutação Puntual , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
11.
Nucleic Acids Res ; 40(22): 11229-39, 2012 12.
Artigo em Inglês | MEDLINE | ID: mdl-23034810

RESUMO

Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1-H3/H4 or H3/H4-DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)(2) tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization.


Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , DNA/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fator 1 de Modelagem da Cromatina/química , Chaperonas de Histonas/química , Histonas/química , Modelos Biológicos , Ligação Proteica , Multimerização Proteica
12.
Biochem Soc Trans ; 40(2): 357-63, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22435812

RESUMO

The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.


Assuntos
Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Animais , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica
13.
Nat Chem Biol ; 8(5): 437-46, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426112

RESUMO

Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.


Assuntos
Ativação Linfocitária , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/metabolismo , Proteína Tirosina Quinase CSK , Membrana Celular/metabolismo , Regulação para Baixo , Humanos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Quinases da Família src
14.
ACS Chem Biol ; 7(2): 367-77, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22070201

RESUMO

The hematopoietic protein tyrosine phosphatase (HePTP) is implicated in the development of blood cancers through its ability to negatively regulate the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Small-molecule modulators of HePTP activity may become valuable in treating hematopoietic malignancies such as T cell acute lymphoblastic leukemia (T-ALL) and acute myelogenous leukemia (AML). Moreover, such compounds will further elucidate the regulation of MAPKs in hematopoietic cells. Although transient activation of MAPKs is crucial for growth and proliferation, prolonged activation of these important signaling molecules induces differentiation, cell cycle arrest, cell senescence, and apoptosis. Specific HePTP inhibitors may promote the latter and thereby may halt the growth of cancer cells. Here, we report the development of a small molecule that augments ERK1/2 and p38 activation in human T cells, specifically by inhibiting HePTP. Structure-activity relationship analysis, in silico docking studies, and mutagenesis experiments reveal how the inhibitor achieves selectivity for HePTP over related phosphatases by interacting with unique amino acid residues in the periphery of the highly conserved catalytic pocket. Importantly, we utilize this compound to show that pharmacological inhibition of HePTP not only augments but also prolongs activation of ERK1/2 and, especially, p38. Moreover, we present similar effects in leukocytes from mice intraperitoneally injected with the inhibitor at doses as low as 3 mg/kg. Our results warrant future studies with this probe compound that may establish HePTP as a new drug target for acute leukemic conditions.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia
15.
J Biol Chem ; 286(36): 31272-81, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768120

RESUMO

The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca(2+)/CaM but outlasts this initial Ca(2+)-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B. We show here that a phospho-mimetic S1303D mutation inhibited CaM-induced CaMKII binding to GluN2B in vitro, presenting a conundrum how binding can occur within cells, where high ATP concentration should promote S1303 phosphorylation. Surprisingly, addition of ATP actually enhanced the binding. Mutational analysis revealed that this positive net effect was caused by four modulatory effects of ATP, two positive (direct nucleotide binding and CaMKII T286 autophosphorylation) and two negative (GluN2B S1303 phosphorylation and CaMKII T305/6 autophosphorylation). Imaging showed positive regulation by nucleotide binding also within transfected HEK cells and neurons. In fact, nucleotide binding was a requirement for efficient CaMKII interaction with GluN2B in cells, while T286 autophosphorylation was not. Kinetic considerations support a model in which positive regulation by nucleotide binding and T286 autophosphorylation occurs faster than negative modulation by GluN2B S1303 and CaMKII T305/6 phosphorylation, allowing efficient CaMKII binding to GluN2B despite the inhibitory effects of the two slower reactions.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Nucleotídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Cinética , Fosforilação , Ligação Proteica , Subunidades Proteicas
16.
ACS Med Chem Lett ; 2(2): 113-118, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21503265

RESUMO

Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.

17.
J Med Chem ; 54(2): 562-71, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21190368

RESUMO

The lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity. Using a structure-based approach, we synthesized a library of 34 compounds that inhibited Lyp with IC(50) values between 0.27 and 6.2 µM. A reporter assay was employed to screen for compounds that enhanced TCR signaling in cells, and several inhibitors displayed a dose-dependent, activating effect. Subsequent probing for Lyp's direct physiological targets by immunoblot analysis confirmed the ability of the compounds to inhibit Lyp in T cells. Selectivity profiling against closely related tyrosine phosphatases and in silico docking studies with the crystal structure of Lyp yielded valuable information for the design of Lyp-specific compounds.


Assuntos
Benzofuranos/síntese química , Proteína Tirosina Fosfatase não Receptora Tipo 22/antagonistas & inibidores , Salicilatos/síntese química , Benzofuranos/química , Benzofuranos/farmacologia , Humanos , Células Jurkat , Modelos Moleculares , Fatores de Transcrição NFATC/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/química , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Receptores de Antígenos de Linfócitos T/fisiologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Salicilatos/química , Salicilatos/farmacologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...